N5 ELECTRICITY & ENERGY

- $E_{h} = cm\Delta T$ $E_{h} = 4180 \times 2 \times (25 5)$ $E_{h} = 167200J$ $E_{h} = 1.67 \times 10^{5}J$
- 2. A 16 kg sample of metal requires 35.2 kJ to increase its temperature by 5 °C. What type of metal is it?

 $E_{h} = cm\Delta T$ 35. 2 × 10³ = c × 16 × 5 c =440J/kg°C The metal is iron

- ✓ Heat is measured in joules and is a form of energy related to vibrations or total kinetic energy of particles in a substance.
- ✓ Temperature is measured in Kelvin or degrees Celsius and is an indication of how hot or cold a substance is. So temperature is a measure of the average/mean kinetic energy.

https://www.bbc.com/bitesize/guides/zwrxsbk/video Scan QR code using your camera

4. Conservation of Energy Examples on next page

N5 ELECTRICITY & ENERGY

 2. A kettle works on the UK mains (230 V) and a current of 12 A flows when it is switched on. a) What is the power rating of the kettle? b) How much energy would the kettle transform if it was switched on for 2 minutes? c) What is the maximum mass of 20 °C water which could be heated to 99 °C in this time? d) What assumptions did you make in part c? 		
a.	V = 230 V I = 12 A P = ?	P = IV P = 12 × 230 P = 2760 W
b.	P = 2760 W t = 2 × 60 = 120 s E = ?	P = E/t 2760 = E/120 E = 120 × 2760 E = 331200 J E = 331 kJ
c.	$\begin{array}{l} m = ? \\ T_1 = 20 \ ^{\circ}\text{C} \\ T_2 = 99 \ ^{\circ}\text{C} \\ \Delta T = T_2 - T_1 = 79 \ ^{\circ}\text{C} \\ c = 4180 \ \text{J/kg}^{\circ}\text{C} \\ E_h = 331 \ \text{kJ} = 331 \times 10^3 \ \text{J} \end{array}$	$E_{h} = cm\Delta T$ $331 \times 10^{3} = 4180 \times m \times 79$ $m = 331 \times 10^{3}/330220$ $m = 1.002$ $m = 1 \text{ kg}$

Assuming all energy supplied to kettle heats the water, none is lost to the surroundings. N5 ELECTRICITY & ENERGY