4. ELECTRICAL CIRCUITS

1. Electrical Circuit Symbols

		l	I
Symbol	Component	Function	Example Application
<u> </u>	cell	providing voltage	combining into a battery
— ⊦ ⊢	battery	providing voltage	powering circuits
$-\otimes$	lamp	producing light	lighting
	switch	controlling current (on/ off)	various
	resistor	controlling resistance (fixed)	potential dividers
<u> </u>	variable resistor	controlling resistance (variable)	dimmer switch
	voltmeter	measuring voltage	fault finding
	ammeter	measuring current	electrical safety

N5 Past Papers to complete:

2014 → MC 01-3 Section B 01

2015 → MC Q1-3 Section B Q1

 $2016 \rightarrow MC Q3-4 Section B Q2$

2. Series Circuits

• The **Current** in a series circuit is the same at all points. $I_s = I_1 = I_2$

 The Voltage in a series circuit splits up amongst the component in the circuit.

$$V_S = V_1 + V_2 + V_3$$

• The total **resistance** in a series circuit is equal to the sum of all the resistances of the components.

$$R_T = R_1 + R_2 + \cdots$$

2. Parallel Circuits

The supply current splits up amongst the branches in a parallel circuit. I_s = I₁ + I₂ + I₃

 The Voltage supply in a parallel circuit is equal to the voltage in each branch.

$$V_S = V_1 = V_2 = V_3$$

One over the total **resistance** is equal to the sum of one over the resistance of each branch.
(Use the x⁻¹ button in your calculator for 1 over your resistance and to get R_T at the end)

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$