N5 DYNAMICS AND SPACE

1. Projectile Motion

A projectile is an object which has been given a forward motion through the air, but which is also being pulled downward by the force of gravity. This results in the path of the projectile being curved.

A projectile has two separate motions at right angles to each other. In calculations each motion must be treated
independent of the other.

Horizontal

- constant acceleration
- for calculations use $\mathrm{v}=\mathrm{u}+\mathrm{at}$ where $\mathrm{u}=0 \mathrm{~ms}^{-1}$ and $\mathrm{a}=9.8 \mathrm{~ms}^{-2}$
- velocity graph
- velocity graph

time

time

Example 1

A ball is kicked horizontally at $5 \mathrm{~ms}-1$ from the top of a cliff as shown below. It takes 2 seconds to reach the ground.

a) What horizontal distance did it travel in the 2 seconds?

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{h}}=5 \mathrm{~ms}^{-1} & \mathrm{~d}=\mathrm{v}_{\mathrm{h}} \times \mathrm{t} \\
\mathrm{~d}=? & \mathrm{~d}=5 \times 2 \\
\mathrm{t}=2 \mathrm{~s} & \mathrm{~d}=10 \mathrm{~m}
\end{array}
$$

b) What was its vertical velocity just before it hit the ground?

$$
\begin{array}{ll}
\mathrm{u}=0 \mathrm{~ms}^{-1} & \\
\mathrm{v}=? & \mathrm{v}=\mathrm{u}+\mathrm{at} \\
\mathrm{a}=9.8 \mathrm{~ms}^{-2} & \mathrm{v}=0+9.8 \times 2 \\
\mathrm{~s}=? & \mathrm{v}=19.6 \mathrm{~ms}^{-1} \\
\mathrm{t}=2 \mathrm{~s} &
\end{array}
$$

Example 2

In the experimental set-up shown below, the arrow is lined up towards the target. As the arrow is fired, the circuit supplying the electromagnet is broken, and the target falls downwards from A to B.

Explain why the arrow will hit the target.

- The arrow and the target have the same initial velocity $\left(\mathrm{u}=0 \mathrm{~ms}^{-1}\right)$, and they both have the same vertical acceleration ($9.8 \mathrm{~ms}^{-2}$).
- As they both start to fall from their high points at the same time they will meet directly under the electromagnet. So the arrow will hit the target.

N5 Past Paper HW
 2015-Sec 2 Q9

2016 - MC Q18

Example 3

A ball is projected horizontally at $15 \mathrm{~ms}-1$ from the top of a vertical building. The ball reaches the ground 5 s later. For the period between projection until it hits the ground, draw graphs, with numerical values on the scales of the ball's:
a) horizontal velocity against time
b) vertical velocity against time

$$
\begin{aligned}
& \mathrm{v}=\mathrm{u}+\mathrm{at} \\
& \mathrm{v}=0+9.8 \times 5 \\
& \mathrm{v}=49 \mathrm{~ms}^{-1}
\end{aligned}
$$

c) From the graphs calculate the horizontal and vertical distances travelled.

horizontal distance $=$ area under graph	vertical distance $=$ area under graph
horizontal distance $=1 \mathrm{xb}$	vertical distance $=1 / 2 \times \mathrm{x} \times \mathrm{h}$
horizontal distance $=5 \times 15$	vertical distance $=0.5 \times 5 \times 49$
horizontal distance $=75 \mathrm{~m}$ OR	vertical distance $=122.5 \mathrm{~m}$
$\mathrm{~d}=\mathrm{vxt}$	vertical distance $=123 \mathrm{~m}$
$\mathrm{~d}=5 \mathrm{x} 15$	

