N5 ELECTRICITY & ENERGY

<u>1. Electric Fields</u> Any electrically charged object emits an electric field. These electric fields can exert a force on other charged particles.

We represent fields as a series of lines. This is shown below for positive and negative charges below. The lines have arrows showing the direction that a positive charge moves in as a result of the field.

plate.

and repelled from the positive

2. POTENTIAL DIFFERENCE (VOLTAGE)

<u>N5 2018</u>

12. An electric field exists around two point charges Q and R. The diagram shows the path taken by a charged particle as it travels through the field. The motion of the particle is as shown.

Which row in the table identifies the charge on the particle, the charge on Q and the charge on R?

		Charge on particle	Charge on Q	Charge on R
	Α	positive	negative	negative
	В	negative	negative	negative
	С	negative	positive	positive
	D	positive	negative	positive
	Ε	positive	positive	negative

2. Potential Difference (voltage)

For current to flow in a circuit, charges in that circuit must be moving. For them to move, they need to be given energy. As current flows round a circuit, each coulomb of charge gains energy in the supply and this is transformed in the components of the circuit.

Potential difference (voltage) of the supply is a measure of the energy given to each coulomb of charge in a circuit.

There is a formula for this (Higher) – useful to explain definition:

 $= \frac{1}{coloumb}$

One volt is defined as one joule per coulomb.