1. Speed

Speed is the distance travelled by an object in one second.

Average Speed

The average speed of an object is the average for the whole journey (total distance travelled divided by time taken).
e.g. Travelling 70km in 2 hours by car

Experiment

Measure distance travelled
with a ruler. Measure time taken
to travel with a stop clock.

$$
\text { Average speed }=\frac{\text { distance }}{\text { total time taken }}
$$

Instantaneous Speed

The instantaneous speed of an object is its speed at one particular point during the journey.
e.g. Looking at the speedometer in the car

Experiment

Measure length of card with a ruler. Measure time taken for card to pass through light gate with an electronic timer.

instantaneous speed $=\frac{\text { length of card }}{\text { time taken to break the beam }}$

2. Velocity-time Graphs

3. Displacement

The displacement of an object can be calculated from the area under a velocity-time graph.

Example

An object starts from rest and reaches a velocity of $4 \mathrm{~ms}-1$ after 2 s . It continues at $4 \mathrm{~ms}-1$ for a further 4 s , before decelerating to rest after another 4 s . Calculate the object's displacement from its starting point.

Displacement = Area under graph
This graph can be split into two triangles and one res Displacement $=$ area under $\mathrm{OA}+$ area under $\mathrm{AB}+$ al Displacement $=(1 / 2 \mathbf{x} \mathbf{b} \mathbf{x h})+(\mathbf{l x} \mathbf{b})+(1 / 2 \mathbf{x} \mathbf{b} \mathbf{x h})$
Displacement $=(0.5 \times 2 \times 4)+(4 \times 4)+(0.5 \times 4 \times 4)$
Displacement $=(4)+(16)+(8)$
Displacement $=28 \mathrm{~m}$

