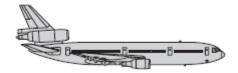

Vectors and Scalars Questions – NAT 5

1) Two forces act on an object, with the angle between the forces being 90°.

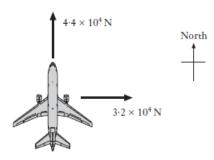
Calculate the resultant force acting on the object. (M + D's!!!!!!)

2) A student walks from X to Y and then from Y to Z in 2 hours.

Calculate or find the following from the students walk:

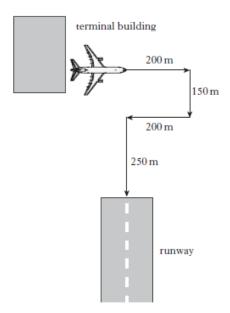

- a) Total distance travelled in km
- b) Average speed in kmh⁻¹
- c) Displacement (M + D's!!!!!) in km
- d) Average velocity (M + D's!!!!!) in kmh⁻¹

Calculate or find the following from the cross country run:	
a) Total distance travelled in m	
b) Average speed in ms ⁻¹	
c) Displacement in m	
d) Average velocity in ms ⁻¹	
4) Put the following quantities into the table below:	
Velocity, distance, time, weight, speed, mass, displacement, force,	
power and acceleration.	
Scalars	Vectors
5) During training an athlete sprints 30m due East followed by 50m due	
West.	
Calculate or find the following from the sprints:	
a) Distance travelled	
b) Displacement	


3) A cross country runner travels 2.1km due South followed by 1.5km

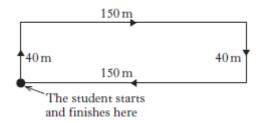
due West in a total time of 20 minutes.

6) An aircraft is flying horizontally at a constant speed.

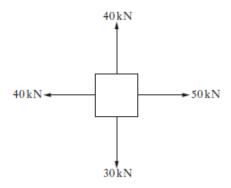


During the flight the aircraft's engines produce a force of $4.4x10^4N$ due North. The aircraft encounters a crosswind blowing from West to East, which exerts a force of $3.2x10^4N$.

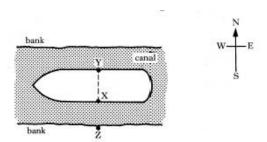
Calculate the resultant force on the aircraft.


7) At an airport an aircraft moves from the terminal building to the end of the runway.

Calculate or find:


- a) Total distance travelled by the aircraft
- b) Displacement of the aircraft.

8) A student follows the route shown in the diagram and arrives back at the starting point.


Calculate or find:

- a) The total distance travelled
- b) Displacement.
- 9) Four tug boats apply forces to an oil rig in the directions shown below.

Calculate the magnitude and direction of the resultant force acting on the oil rig.

10) A barge is travelling, with a velocity of 2.0ms⁻¹due West, along a canal. A girl runs, with a speed of 4.8ms⁻¹, from X to Y across the deck of the barge as shown below.

By drawing a scale drawing or otherwise, find the **resultant velocity** of the girl **relative to** someone at **point Z** on the bank of the canal.