## 1. Scalars and Vectors

Scalars - have magnitude only
Vectors - have both magnitude (size) \& direction

| Scalars | Vectors |
| :---: | :---: |
| distance | displacement |
| speed | velocity |
| - | acceleration |
| time | - |
| - | force |
| mass | weight |
| energy | - |

## 2. Distance and Displacement

Distance is a scalar quantity, which is the total length of the path travelled in a journey.

$$
\begin{gathered}
\text { speed }=\frac{\text { distance }}{\text { time }} \\
v=\frac{d}{t}
\end{gathered}
$$

Displacement is a vector quantity which gives the separation between the start and finish points of the journey.

$$
\begin{gathered}
\text { velocity }=\frac{\text { displacement }}{\text { time }} \\
v=\frac{s}{t}
\end{gathered}
$$

## 3. Vector Addition

Vectors should be added "nose to tail" when calculating resultant. Helpful triangle rules You can use scale diagram or Pythagoras with trigonometry


$a^{2}=b^{2}+c^{2}$

## N5 Past Papers HW

2014 MC Q14,15
2015 Section 2 Q7a(i)(ii)
2016 Section 2 Q9

## 3. Example

A woman walks 3 km due North, and then 4km due East. This takes her 2hours. Find her:
a) distance travelled.
b) displacement from her starting point.
c) average speed.
d) average velocity.
a) Distance travelled $=(3+4) \mathrm{km}=7 \mathrm{~km}$

b) Displacement could be found by using a scale diagram or Pythagoras to get the magnitude and SOHCAHTOA to get the bearing. $a^{2}=b^{2}+c^{2} a^{2}=(3)^{2}+(4)^{2} a^{2}=(9)+(16)$ $\mathrm{a}^{2}=25 \mathrm{a}=5 \mathrm{~km} \quad \tan \mathrm{x}=0 \mathrm{pp} /$ adj $\tan \mathrm{x}=4 / 3 \tan \mathrm{x}=1.33 \mathrm{x}=53^{\circ}$
Displacement $=5 \mathrm{~km}$ on a bearing of 053 .
c) average speed $=$ distance $/$ time average speed $=7 / 2$ average speed $=3.5 \mathrm{kmh}^{-1}$
d) average velocity $=$ displacement/time average velocity $=5 / 2$ average velocity $=$
$2.5 \mathrm{kmh}^{-1}$ on a bearing of 053

