Chemistry Calculations

These sheets belong to

KHS Jan 2014

Introduction

This is the first of hopefully two booklets written to teach the calculations for National 5 Chemistry as taught in Scotland. The first booklet will describe methods for these calculations and give a few 'Self-Check' problems. The 2nd booklet will be questions extracted from previous exam papers (N5, Standard Grade & Intermediate 2) to show the questions in context.

It is assumed that you already know how to do the following:

- write formulae for any kind of compound
- write & balance equations
- be able to find relative atomic masses (RAM) in a data booklet

Comtemts

1. Formula MassFormula given
in the Data Booklet2. Percentage Composition% by mass = $\frac{m}{GFM} \times 100$ 3. Molar Mass (gfm).4. Molar Calculations $n = \frac{m}{GFM}$ 5. Using Balanced Equations.6. Concentration of Solutionsn = CV7. Titrations $\frac{C_1V_1}{n_1} = \frac{C_2V_2}{n_2}$

Answers

The **Formula Mass** of a substance is exactly what it says: it is the combined mass of **all the atoms** you can see in the formula for that substance. It can be done as follows:

- write formula (this is often done for you)
- determine number of atoms of each element
- use **Data Book** to find relative atomic masses (RAM)
- calculate total mass of substance

Worked Example: copper (II) carbonate

CuCO₃

1 x Cu	= 1 x 64	= 64				
1 x C	$= 1 \times 12$	= 12	formula mass	=	124	ати
3 x O	$= 3 \times 16$	= 48				
		124				

Notice the units are amu (atomic mass units) where:

1 amu = mass of a proton

Test	Yourself 1 Calcul	ate the Formula N	Mass o	of each of these s	ubstances.
<i>a</i>)	sodium sulphate	$Na_{2}SO_{4}$	h)	marble	CaCO ₃
b)	magnesium nitrate	$Mg(NO_3)_2$	i)	water	H ₂ O
<i>c</i>)	aluminium oxide	Al ₂ O ₃	j)	butane	$C_{4}H_{10}$
d)	glucose	$C_{6}H_{12}O_{6}$	k)	copper	Cu
e)	sulphuric acid	H_2SO_4	l)	salt	NaCl
<i>f</i>)	ammonium nitrate	NH ₄ NO ₃	m)	ammonia	NH ₃
g)	calcium hydroxide	Ca(OH) ₂	n)	ethanol	C ₂ H ₅ OH

2. Percentage Composition - Unit 3

Very often we are only interested in **one** particular element within a compound. We may also want to compare different compounds. This is best done if we express the amount of an element as a percentage.

- write formula (this is often done for you)
- calculate total mass of the substance (Formula Mass)
- calculate (notice) what **part** is due to specific element
- express as a % using:

% Element = (mass of element / formula mass) x 100

% by mass =
$$\frac{m}{GFM} \times 100$$

Worked Example: potassium sulphate K₂SO₄ $= 2 \times 39$ 2 x K **= 78** formula mass = 174 amu 32 $1 \times S = 1 \times 32$ = 61 MV (70 / 174)100

$$4 \times 0 = 4 \times 16 = 64 \% K = (787174) \times 100$$

$$174 = 44.8\%$$

.

 \sim

• . •

Test Yourself 2Calculate the following % compositions.a)% sodium in sodium sulphate
$$Na_2SO_4$$
b)% magnesium in magnesium nitrate $Mg(NO_3)_2$ c)% aluminium in aluminium oxide Al_2O_3 d)% carbon in glucose $C_6H_{12}O_6$ e)% sulphur in sulphuric acid H_2SO_4 f)% nitrogen in ammonium nitrate NH_4NO_3 g)% calcium in calcium hydroxideCa(OH)_2

maalf)

This is a very simple, but very significant, step in many calculations and should present no extra problems. Quite simply you

- calculate formula mass (in amu)
- convert to molar mass by converting to grammes

mass of 1 mole = formula mass in grammes = gfm

Worked Example: potassium sulphate K₂SO₄

For the purposes of **doing calculations** it is enough to learn to perform this step. In the context of **understanding Chemistry**, it is important that you appreciate what '**a mole**' actually is. Your teacher may explain further.

Test	Yourself 3 Calcul	ate the mass of <i>1</i>	mole	for each substand	ce below.
<i>a</i>)	copper sulphate	CuSO ₄	g)	pearl ash	K ₂ O
b)	potasium nitrate	KNO ₃	h)	carbon dioxide	CO ₂
<i>c</i>)	nickel(III) sulphide	Ni ₂ S ₃	i)	ethane	C_2H_6
d)	sucrose	$C_{12}H_{22}O_{11}$	j)	oxygen	O ₂
e)	nitric acid	HNO ₃	k)	methanol	CH ₃ OH
<i>f</i>)	ammonium sulphate	$(\mathrm{NH}_4)_2\mathrm{SO}_4$	l)	iron (III) nitrate	$Fe(NO_3)_3$

4. Molar Calculations - Unit 1

Typically, we start by weighing out chemicals but to allow us to compare the **amounts of chemicals** present we need to **convert from masses to moles**. Again, we start by

- calculating formula mass (in amu)
- converting to molar mass by converting to grammes

number of moles = mass of chemical / gfm

Worked Example: 148g of Ca(OH),

 $Ca(OH)_2$

1 x Ca = 2 x O = 2 2 x H =	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	formula mass = 74 amu Molar Mass = 74 g 1 mole = 74 g
$\begin{array}{rcl}n & = & m \\ = & 143 \\ = & 2 n \end{array}$	' gfm 8 / 74 noles There a	ere 2 moles of Ca(OH) ₂ in 148g

Test	Yourself 4 How m	nany moles in 10	g of e	ach substance be	low.
<i>a</i>)	copper sulphate	CuSO ₄	d)	pearl ash	K ₂ O
b)	potasium nitrate	KNO ₃	e)	carbon dioxide	CO ₂
<i>c</i>)	nickel(III) sulphide	Ni ₂ S ₃	<i>f</i>)	ethane	C_2H_6

At other times we will know the *quantity of chemical* needed (in *moles*) but will need to express this as a *mass* in grammes.

- calculating formula mass (in amu)
- converting to molar mass by converting to grammes

mass of chemical = number of moles x gfm

Worked Example: mass of 2.5 moles of CaCO₃

<i>m</i> =	n x gfm		
		_100	1 mole = 100 g
3 x O	$= 3 \times 16$	= 48	Molar Mass $= 100 g$
1 x C	$= 1 \times 12$	= 12	
1 x Ca	$= 1 \times 40$	= 40	formula mass = 100 amu

Calculate the mass of each of the following.

$$= n x g m$$

= 2.5 x 100

=

Test Yourself 5

250 g

 $M \equiv M \chi g$

2.5 moles of CaCO₃ weighs 250g

<i>a</i>)	1.5 moles of sucrose	$C_{12}H_{22}O_{11}$
b)	2 moles of oxygen	O_2
<i>c</i>)	0.2 moles of nitric acid	HNO ₃
<i>d</i>)	0.6 moles of methanol	CH ₃ OH
<i>e</i>)	0.01 moles of ammonium sulphate	$(NH_4)_2SO_4$
<i>f</i>)	0.3 moles of iron (III) nitrate	$\operatorname{Fe}(\operatorname{NO}_3)_3$

5. Using Balanced Equations - Unit 2

A balanced equation tells us the **number of moles** of each reactant and product in a given reaction.

A calculation based on a balanced equation can be broken down into stages:

- write the **balanced equation** (usually given)
- underline the substances involved in the calculation
- *extract from the equation the number of moles of each substance*
- replace number of moles with calculated molar masses (if necessary, change grams to other units eg kg, tonnes)
- use simple proportion to complete calculation

Worked Example: what mass of iron would be produced by reacting 300 tonnes of iron(III) oxide with carbon monoxide in a blast furnace.

$\underline{Fe_2O_3} + 3CO$	\rightarrow	$\underline{2Fe} + 3CO_2$
1 mole	\rightarrow	2 moles
160 g	\longrightarrow	112 g (2 x 56g)
160 tonnes	\longrightarrow	112 tonnes
1 tonne	\longrightarrow	112 / 160 = 0.7 tonnes
300 tonnes	\longrightarrow	<i>300 x 0.7</i> = 210 tonnes

There are a variety of methods available for the final **proportion** calculation. The one shown is often referred to as the **unitary method**. Other methods include the **ratio method** and **scaling factor method**. Your teacher will help you find the best method for you.

Test Yourself 6

a) What mass of carbon dioxide is produced when 160 g of methane burns completely in air?

 $CH_4 + 2O_2 \implies CO_2 + 2H_2O$

b) Calculate the mass of magneium oxide produced when 100 g of magnesium carbonate decomposes completely on heating.

 $MgCO_3 \longrightarrow CO_2 + MgO$

c) Silicon carbide, SiC, which is used as an abrasive on sandpaper, is prepared using the chemical reaction.

 $3C + SiO_2 \implies 2CO + SiC$

How many grams of SiC can be produced from 15.0 g of C?

d) The chemical equation for the photosynthesis reaction in plants is

 $6H_2O + 6CO_2 \implies C_6H_{12}O_6 + 6O_2$

How many grams of H_2O reacts with 20.0 g of CO_2 ?

e) Decomposition of KClO₃ serves as a convenient laboratory source of small amounts of oxygen gas. The reaction is

 $2KClO_3 \implies 2KCl + 3O_2$

What mass of $KClO_3$ must be heated to produce 8 g of O_2 ?

6. Concentration Of Solutions - Unit 1

With solutions we need to know **how much chemical** is dissolved in a given **amount of solution**. Typical units can be grammes per litre (g | l) or even milligrammes per millilitre (mg | ml)

However, to make comparisons between different chemicals easier, it is better to convert from weights into number of moles and express the concentration in **moles per litre** (**moles / l** or **mol l**⁻¹).

no. of moles = mass / gfm then

conc. = moles / volume

volumes must always be in litres

Worked Example: calculate the concentration of NaOH solution containing 12g of NaOH in 500 cm³ of solution.

NaOH Formula Mass = 40 amu molar mass, gfm = 40 gmoles of NaOH, m = mass / gfm m = 12 / 40 = 0.3 molesConcentration of NaOH, C = m / V $C = 0.3 / 0.5 (500 cm^3 in litres)$ C = 0.6 moles / l (0.6 M)

Chemistry Calculations

Test Yourself 7Calculate the *number of moles* of chemical in each of the
following solutions.

- a) 25 cm³ of a 1.0 mol l⁻¹ solution
- b) 50 cm^3 of a 0.5 mol l^{-1} solution
- c) 250 cm³ of a 0.25 mol l⁻¹ solution
- *d*) 500 cm³ of a 0.01 mol l⁻¹ solution
- e) 25 cm^3 of a $0.1 \text{ mol } l^{-1}$ solution
- f) 100 cm³ of a 0.2 mol l⁻¹ solution

Test	Yourself 8	Calculate the <i>mass</i> following solution	s <i>of ch</i> ns. (<i>U</i>	nemical present in each se your answers to TY	of the 7).
a)	25 cm³ of a 1	.0 mol l ⁻¹ solution	of	hydrochloric acid	HCl
b)	50 cm³ of a 0	.5 mol l ⁻¹ solution	of	sodium hydroxide	NaOH
c)	250 cm³ of a	0.25 mol l⁻¹ solution	ı of	sulphuric acid	H_2SO_4
<i>d</i>)	500 cm ³ of a	0.01 mol l⁻¹ solution	ı of	calcium hydroxide	$Ca(OH)_2$
e)	25 cm ³ of a 0	.1 mol l ⁻¹ solution	of	nitric acid	HNO_3
<i>f</i>)	100 cm ³ of a	0.2 mol l⁻¹ solution	of	ammonia	NH_3

Test	Yourself 9	Calculate the	e <i>concentration</i> (in <i>mol</i> l^{-1}) of each of the
		following so	lutions.
<i>a</i>)	3.65 g	of HCl	in 1000 cm³ of a hydrochloric acid solution
b)	3.65 g	of HCl	in 100 cm³ of a hydrochloric acid solution
<i>c</i>)	6.62 g	of $Pb(NO_3)_2$	in 250 cm^3 of a lead(II) nitrate solution
<i>d</i>)	1.00 g	of NaOH	in 250 cm³ of a sodium hydroxide solution
<i>e</i>)	1.96 g	of H_2SO_4	in 250 cm³ of a sulphuric acid solution
<i>f</i>)	1.58 g	of KMnO ₄ in 2:	50 cm ³ of a potassium manganate solution

A Titration is a practical method of using one chemical of **known** concentration to determine the **unknown** concentration of another.

Usually the chemicals are **acids** (containing H^+ ions) and **alkalis** (containing OH^- ions).

At the **end-point**, where the **indicator** changes colour, the solution is **neutralised** so;

moles of H^+ ions = moles of OH^- ions

Worked	it took 12.5 cm ³ of 0.2 M NaOH to neutralise 10 cm ³
Example:	of sulphuric acid. Calculate the concentration of the
	acid.

Method 1: most suitable if • equation is given / written • question is broken into parts

Step 1: start with '*known*' - *know* the concentration *and* the volume - *calculate* number of moles

 $m = C x V \quad n = 0.2 x \ 0.0125 \ (12.5 \ cm^3 \ in \ litres)$ $n = 0.0025 \ moles \ of \ NaOH$

Step 2: convert to 'unknown' - use balanced equation to convert to number of moles of other chemical.

 $2 \text{ NaOH} + H_2 SO_4 \implies Na_2 SO_4 + 3H_2 O$ $2 \text{ mole} \implies 1 \text{ mole}$ $0.0025 \implies 0.00125 \text{ moles of } H_2 SO_4$ Step 3: calculate concentration of 'unknown' $\boxed{C} = m/V \quad C = 0.00125 / 0.010 (10 \text{ cm}^3 \text{ in litres})$ $\boxed{C} = 0.125 \text{ moles} / 1 \quad (0.125 \text{ M})$

Method 2:	most suitable if	• eq • qı	juation is not given / written Jestion is not in parts
At the end-p neutralised	ooint , where the indica so;	itor c	hanges colour, the solution is
	moles of H+ ions M _{H+}	= =	moles of OH ⁻ ions М _{он-}
	$\mathbb{M}_{ACID} = \mathbb{C}_{ACID} \times \mathbb{V}_{ACID}$	D	$\mathcal{D}_{ALK} = \mathbb{C}_{ALK} \ x \ \mathbb{V}_{ALK}$
but, ea ni	ach acid has a differen Imber of H+ ions	t	each alkali has a different number of OH ⁻ ions
H H H	$Cl, \qquad \mathbb{P}_{ACID} = 1$ ${}_{2}SO_{4}, \qquad \mathbb{P}_{ACID} = 2$ ${}_{3}PO_{4}, \qquad \mathbb{P}_{ACID} = 3$		NaOH, $\mathbb{P}_{ALK} = 1$ Ca(OH) ₂ , $\mathbb{P}_{ALK} = 2$
$\mathcal{M}_{H+} = 0$	$C_{ACID} \times \mathbb{V}_{ACID} \times \mathbb{P}_{ACID}$ \mathcal{M}_{H+}	=	$\mathcal{D}_{OH-} = \mathcal{C}_{ALK} \ x \ \mathcal{V}_{ALK} \ x \ \mathcal{D}_{ALK}$ \mathcal{D}_{OH-}
<i>so</i> ,	$\square C_{ACID} \times V_{ACID} \times \mathbb{P}_{ACID}$	=	$\mathbb{C}_{ALK} \times \mathbb{V}_{ALK} \times \mathbb{P}_{ALK}$
Worked Example:	it took 12.5 cm³ of of H ₂ SO ₄ . Calculat	0.2 N te the	I NaOH to neutralise 10 cm³ concentration of the acid.
use	$\mathbb{C}_{ACID} \times \mathbb{V}_{ACID} \times \mathbb{P}_{ACID}$	=	$\mathbb{C}_{ALK} \times \mathbb{V}_{ALK} \times \mathbb{P}_{ALK}$
	C_{ACID} x 10 x 2	=	0.2 x 12.5 x 1
	C_{ACID} x 20	=	2.5
	$\mathcal{C}_{_{ACID}}$	=	2.5/20 = 0.125 M

Method 3:

- *most suitable if equation is given*
 - question is **not** in parts

In general we titrate to balance the acidity and alkanity. Sometimes it is as simple as:

but, as equations show, only sometimes are the moles of acid and moles of alkali equal.

HCl	+	NaOH	\rightarrow	Na_2SO_4	+ $3H_2O$
l = mole of		l = mole of			-
acia		αικαιι			

often, they are not

 $H_2SO_4 + 2 NaOH \rightarrow I = moles of \qquad 2 = moles of \qquad acid (m)$ $Na_2SO_4 + 3H_2O$ acid (\tilde{m}_{ACID})

We can allow for this by including an extra term in our equation

This is the 'preferred' method for N5 exams and this is the formula given in the Data Book.

Worked Example:

it took 12.5 cm³ of 0.2 M NaOH to neutralise 10 cm³ of $H_{2}SO_{4}$. Calculate the concentration of the acid.

$$\frac{\mathbb{C}_{ACID} \times \mathbb{V}_{ACID}}{\mathbb{M}_{ACID}} = \frac{\mathbb{C}_{ALK} \times \mathbb{V}_{ALK}}{\mathbb{M}_{ALK}} \qquad \frac{\mathbb{C}_{ACID} \times 10}{1} = \frac{0.2 \times 12.5}{2}$$

$$\frac{C_1 V_1}{n_1} = \frac{C_2 V_2}{n_2} \qquad \qquad \mathbb{C}_{ACID} \times 10 = 1.25$$

$$\mathbb{C}_{ACID} = 0.125 \text{ mol } l^{-1}$$

KHS Jan 2014

N5 - Book 1

Amswers

TY1	a) e) i) m)	142 amu 98 amu 18 amu 17 amu	b) f) j) n)	148.1 70 ar 58 ar 70 ar	5 ати пи пи пи пи		c) g) k)	102 a 74 ar 63.5	ати пи ати	d) h) l)	180 amu 100 amu 58.5 amu
TY2	a) e)	31.5 % 32.7 %	b) f)	18.8 35 %	%	c) g)	52.9 54.1	% %	<i>d</i>)	40 %	2
ТҮЗ	a) e) i)	159.5 g 63 g 30 g	b) f) j)	101 g 132 g 32 g		c) g) k)	213 g 94 g 32 g	5	d) h) l)	342 g 44 g 212 g	
TY4	a) d)	0.063 mol 0.106 mol	es es	b) e)	0.099 0.222	9 mole 7 mole	25 25	c) f)	0.047 0.333	7 mole 3 mole	25 25
TY5	a) d)	513 g 19.2 g	b) e)	64 g 1.32	g	c) f)	12.6 72.6	g g			
TY6	a) d)	440 g 8.2 g	b) e)	47.9 20.4	g g	<i>c</i>)	16.7	g			
TY7	a) d)	0.025 mol 0.005 mol	es es	b) e)	0.023 0.002	5 mole 25 mo	es les	c) f)	0.062 0.02	25 mo moles	les S
TY8	a) d)	0.9125 g 0.37 g		b) e)	1.0 g 0.1575 g			c) f)	6.125 g 0.34 g		
TY9	a) d)	0.1 mol l ⁻¹ 0.1 mol l ⁻¹		b) e)	1.0 n 0.08	10l l ⁻¹ mol l ⁻¹	1	c) f)	0.08 0.04	mol l ⁻ mol l ⁻	1 1
<i>TY1</i> ()	a) 0.16 d) 0.12	8 mol mol l ⁻	l ⁻¹ 1	b) e)	0.130 0.035	6 mol 52 mo	l-1 l l-1	c) f)	0.118 0.330	8 mol l ⁻¹ 6 mol l ⁻¹